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Abstract

Anomalous atmospheric conditions can lead to surface temperature anomalies, which

in turn can lead to temperature anomalies deep in the soil. The deep soil temperature

(and the associated ground heat content) has significant memory – the dissipation

of a temperature anomaly may take weeks to months – and thus deep soil temper-

ature may contribute to the low frequency variability of energy and water variables

elsewhere in the system. The memory may even provide some skill to subseasonal

and seasonal forecasts.

This study uses three long-term AGCM experiments to isolate the contribution

of deep soil temperature variability to variability elsewhere in the climate system.

The first experiment consists of a standard ensemble of AMIP-type simulations,

simulations in which the deep soil temperature variable is allowed to interact with

the rest of the system. In the second experiment, the coupling of the deep soil

temperature to the rest of the climate system is disabled – at each grid cell, the

local climatological seasonal cycle of deep soil temperature (as determined from the

first experiment) is prescribed. Finally, a climatological seasonal cycle of sea surface

temperature (SST) was prescribed in the third experiment. Together, the three

experiments allow us to isolate the contributions of variable SSTs, interactive deep

soil temperature, and chaotic atmospheric dynamics to meteorological variability.

The results show that allowing an interactive deep soil temperature does indeed

significantly increase surface air temperature variability. An interactive deep soil

temperature, however, reduces the variability of the hydrological cycle (evapora-

tion and precipitation), largely because it allows for a negative feedback between

evaporation and temperature.
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1 Introduction

An anomalous atmospheric event – heavy rains, for example, spanning several days

or a reduced monthly solar radiation due to persistent cloudiness – can induce sub-

stantial anomalies in moisture and energy reservoirs below the land surface. De-

pending on the nature of the various physical processes underlying moisture and

heat transfer, dissipation of such anomalies may take weeks to months. Anomalies

with such timescales are of critical importance to subseasonal and seasonal predic-

tion, for it is through such anomalies and their links to atmospheric processes that

predictive skill is realized.

The lifetime of land surface anomalies is shorter than that of ocean anomalies.

Largely because of this, studies of land moisture impacts on forecasts [e.g. Delworth

and Manabe (1988), Fennessy and Shukla, 1999, Liu and Avissar (1999)a,b, Dirmeyer,

(2000), Douville (2003), Mahanama and Koster (2003), Koster et al. (2004)] have

lagged behind those of ocean impacts [e.g. Kumar and Hoerling (1995) and Shukla

(1998)], and the initialization of the land surface in operational seasonal forecast

systems is considered much less important than ocean initialization. Even so, land

moisture initialization is beginning to receive more attention, particularly given its

potential importance in regions and seasons for which the ocean has little impact

[ Koster et al. (2000)].

While studies of land moisture variability and its effects on climate are still

somewhat immature, they are much farther along than corresponding studies of the

climatic impacts of changes in heat content. Only a few published studies have

addressed the latter problem. For example, Xue et al. (2002) demonstrated in a

modeling study that deep soil temperatures over the western United States (US) in
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late spring have an impact on US summer precipitation. Hu and Feng (2004)a,b

analyzed deep soil data from about 300 stations in the contiguous United States

covering 30 years and found timescales for soil temperature anomalies of about 2-3

months. They also found evidence of a connection between the late spring temper-

ature and summer precipitation. After analyzing observed soil moisture data and

simulated soil temperature data, Amenu et al. (2005) concluded that the persistence

of soil moisture at all soil layers is almost twice that of soil temperature.

In the present paper, we undertake to investigate further the impact of land

heat content variations on climate variability in an Atmospheric General Circulation

Model (AGCM). Our analysis focuses chiefly on two AGCM simulations: one in

which the model’s deep soil temperature was free to vary in response to variations in

atmospheric forcing at the surface, and another in which the deep soil temperature at

each grid cell was prescribed to a climatological seasonal cycle. In effect, variations

in subsurface temperature were allowed to feed back on climate only in the first

simulation. Isolating the impact of subsurface temperature variations on climate

is the critical first step toward establishing the usefulness of its initialization for

forecasts. A supplemental simulation with prescribed climatological SSTs was also

examined to account for the impact of SST variability on meteorological variables

(mainly, near-surface air temperature).

Section 2 provides a brief description of the AGCM and its component LSM

(Land Surface Model). This section also describes the setup of the experiment. An

evaluation of the AGCM’s ability to represent observed surface and air temperature

variability is provided in Section 3. Section 4 presents results illustrating the impact

of deep soil temperature variability on above-ground climate variability.
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2 Experiment Description

2.1 Models Used

The NSIPP-1 (NASA Seasonal-to-Interannual Project-1) forecasting system pro-

duced the simulations examined in this paper. The atmospheric component of the

system has a finite-differenced, primitive equations dynamical core that allows arbi-

trary horizontal and vertical resolution. It uses a finite-difference C-grid, on latitude-

longitude coordinates in the horizontal and a generalized sigma coordinate in the

vertical (Suarez and Takacs, 1995). Model physics includes penetrative convection

with the relaxed Arakawa–Schubert scheme (Moorthi and Suarez, 1992), Richard-

son number-dependent fluxes in the surface layer, and a sophisticated treatment

of radiation, including the Chou and Suarez (1994) parameterization of longwave

radiation and the calibration of the cloud parameterization scheme with Earth Ra-

diation Budget Experiment (ERBE) and International Satellite Cloud Climatology

Project (ISCCP) data.

The Mosaic LSM (Land Surface Model) (Koster and Suarez, 1992, 1996) con-

stitutes the land component of the NSIPP-1 forecasting system. The Mosaic LSM

separates each grid cell into subgrid ”tiles” based on vegetation class and then per-

forms separate energy and water balance calculations over each tile. Following the

approach of Sellers et al. (1986), vegetation explicitly affects the balance calcula-

tions within a tile in several ways: (a) stomatal resistance increases during times

of environmental stress, thereby reducing transpiration; (b) vegetation phenology

helps determine the albedo and thus the net radiation; and (c) the ”roughness” of

the vegetation affects the transfers of both momentum and the turbulent fluxes. All
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the tile diagnostic quantities are aggregated to grid cell averages prior to analysis.

Subsurface heat storage is represented by two state variables: the surface tem-

perature and the deep soil temperature, associated with heat capacities of 7 x 104

Jm−2K−1 and 4.74×106 Jm−2K−1, respectively. Fluxes of heat between the two

reservoirs are computed using a variant of the force-restore formulation of Dear-

dorff, (1978). In essence, the flux, GD, of heat from the surface reservoir to the deep

soil reservior at a given time step is computed with:

GD = −
ωdc

√

(2)
(TD − TC), (1)

where ω is the frequency of the diurnal temperature cycle, d is the depth over which

a diurnal temperature wave is felt, c is the volumetric heat capacity, TD is the deep

soil temperature, and TC is the surface temperature.

The higher heat capacity of the deep soil reservoir relative to the surface reservoir

(by a factor of about 70) gives the deeper reservoir a greater inertia, resulting in lower

frequency variations and a lagged response to surface forcing. Figure 1 illustrates

this behavior at a representative point (located in the western United States). The

curves in Figure 1a, which were extracted from the ALO experiment described in

section 2.2 below, show single, concurrent annual cycles of simulated daily surface

temperature and daily deep soil temperature. The deep soil temperature TD is forced

only by TC , and thus it follows roughly the same seasonal cycle as TC . The response

of TD to variations in TC , however, is clearly muted and delayed. Figure 1b shows
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the mean seasonal cycles of TC and TD, as computed from 20 years of simulation.

On average at this point, TD lags TC by about 10 days. The global distribution of

lag time (not shown) indicates that a 10 day lag is indeed typical for this model.

The force-restore approach is rather simple compared to the more detailed ap-

proaches used in many of today’s LSMs –approaches that include, for example, mul-

tiple soil temperature layers and heat diffusivites that vary with moisture content.

The simple approach, however, is deemed adequate here for a first-order analysis of

deep soil temperature effects.

2.2 Simulations Performed

Three separate AGCM experiments were used to analyze temperature variability

in AGCMs (Table 1). First, an AGCM simulation with a fully interactive land

surface model (the Mosaic LSM) allowed both SST variability (prescribed from

observations) and land surface processes to influence the atmosphere (experiment

ALO). A total of 700-years of AGCM data were produced for ALO by a 10-member

ensemble of AGCM simulations, each simulation spanning about 70 years (1930–

2000) on a 2o × 2.5o (lat/lon) grid. The second experiment (ALOT) was designed

to prevent deep soil temperature variability from affecting the atmosphere. Aside

from its shorter duration (ALOT covered a single 60-yr period, from 1930–1989), this

experiment differed from ALO in only one way: in ALOT, the deep soil temperature

at each grid cell was reset once each day to the ALO climatological value for that

day at that grid cell. Because the prescribed climatology was derived directly from

ALO, experiments ALO and ALOT have identical climatological seasonal cycles of

TD, while TD varies interannually only in ALO. (Note that in ALOT, the evolution
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of TD away from climatology over the 24 hours following its prescription each day

is considered negligible.)

In the third experiment (AL), the SST variability was disabled by prescribing the

climatological seasonal cycle of SST from Reynolds and Smith (1995). The deep soil

temperature, though was allowed to interact with the climate system, as in ALO.

Experiment AL consisted of a single 200-year simulation.

3 Overall Evaluation of AGCM simulations

Since the conclusions of this paper depend on the deep soil temperature variability

simulated by an AGCM, we begin with an evaluation of the model’s ability to simu-

late surface and subsurface temperature. Unfortunately, for deep soil temperature,

a direct global evaluation is impossible because multi-decadal deep soil tempera-

ture measurements are virtually non-existent. For deep soil temperature, we must

rely on an indirect evaluation that focuses on simulated surface temperatures. It

is, after all, only through changes in surface temperature that changes in deep soil

temperature are realized – both in nature and in the model.

Earth observing satellites have been taking measurements relevant to surface

skin temperature for decades. The International Satellite Cloud Climatology Project

(ISCCP) has produced global clear–sky skin temperature fields using satellite obser-

vations since 1982. For near-surface air temperature (Tair), the Climate Monitoring

System (CAMS) has generated a global gridded data set using station data for the

period 1946–2003. We use these two data sets to evaluate the temperatures simu-

lated in experiment ALO. The top left panel in Figure 2 shows the global distribution

of annual mean land surface temperature from ISSCP, derived by aggregating the
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30km 3-hourly ISCCP data over the 1986-1995 period to a 1o × 1o (lat/lon) grid.

The annual mean Tair from the CAMS data is shown in the top right panel. Cor-

responding maps for experiment ALO (for the period 1930–1989) are shown in the

bottom row. (Again, the AGCM data were produced on a 2o × 2.5o grid, a total

of 700-years of simulations provided the statistics for the ALO ensemble). Though

not perfect, the AGCM annual mean temperatures in the ALO ensemble are in

reasonable agreement with both satellite-based estimates and CAMS data.

For an evaluation of the interannual variability , we compute the standard de-

viation of monthly temperatures for each calender month. The average (over the

year) of the standard deviation of interannual variation of monthly temperature is

shown in Figure 3 – for the ISCCP skin temperature (top left), CAMS Tair (top

right), ALO surface temperature (bottom left), and ALO near-surface air temper-

ature (bottom right). The model captures the general increase in variabilities from

low to high latitudes, but it has some notable deficiencies. The AGCM underesti-

mates variability throughout the tropics. Also, the AGCM’s surface temperature

variability in high-latitudes is lower than that of the ISCCP data, possibly due to

problems with the simulation of snow. (On the other hand, the simulation of Tair

variability in high latitudes appears more reasonable.) Note that the ISCCP data

reflect cloud-free conditions, while the AGCM data and the CAMS data reflect both

cloud-free and overcast conditions.

Another manifestation of temperature variability relevant to this paper is the

“memory” of temperature, as measured by its one-month-lagged autocorrelation.

The top rows of Figures 4 and 5 provide comparisons (for boreal summer [JJA] and

winter [DJF], respectively), of observed and simulated (in ALO) one-month-lagged
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autocorrelation of Tair.[Note that the global distribution of one-month-lagged au-

tocorrelation of TD in ALO (not shown) showed approximately two times that of

Tair.] For both seasons, the model performs reasonably well, capturing the tropi-

cal/extratropical distinction in memory seen in the observations and generally re-

producing the correct magnitudes of the autocorrelations. As with the simulation

of standard deviation, though, the model has some distinct deficiencies. Simulated

memory, for example, is too high in the Great Plains of North America during JJA,

undoubtedly due to the hydrological land-atmosphere coupling in this model, which

is known to be excessive (Guo et al., 2006). Across the globe, memory in the model

generally appears to be biased slightly high.

4 Results

4.1 Variability of Near-Surface Air Temperature

The bottom panels of Figures 4 and 5 show the impact of prescribing the deep soil

temperature on surface memory. The difference maps (lower right panels) show that

in both seasons, prescribing the deep soil temperature to climatology substantially

reduces the memory of Tair in the extratropics. In other words, the heat reservoir

associated with the deep soil temperature clearly adds memory to the above-surface

climate system. The much larger impact in boreal winter is probably associated with

the control of the deep soil on the evolution, maintenance and ablation of snowpack.

We now take advantage of the design of the experiments to characterize the in-

terannual variance of monthly–mean near-surface air temperature (σ2
T−air

) in terms

of three separate controls: SST variability, chaotic atmospheric dynamics, and deep
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soil temperature. To illustrate how these three controls affect σ2

T−air
, we follow the

approach of Koster et al. (2000), who performed an analogous analysis of precip-

itation variance. The approach rests on the assumption of a linear framework for

expanding σ2
T−air

of the control (ALO) experiment:

σ2

T−air,ALO
= σ2

T−air,ALOT
[XO + (1 − XO)]

σ2

T−air,ALO

σ2

T−air,ALOT

. (2)

This equation, of course, is a tautology. The right hand side of the equation, how-

ever, can be interpreted in terms of the three aforementioned controls, allowing us

to illustrate their separate contributions to the total variance (σ2

T−air,ALO
). We in-

terpret the first term, σ2
T−air,ALOT

, as the air temperature variance a climate system

would achieve in the absence of deep soil temperature variability; this term is com-

puted directly from the ALOT experiment. The terms XO and 1 − XO are the

fractional contributions of oceanic and random atmospheric processes, respectively,

to σ2

T−air,ALOT
; in analogy to Koster et al. (2000), we compute:

XO =
σ2

T−air,ALO − σ2
T−air,AL

σ2
T−air,ALO

. (3)

Finally, we interpret the term
σ2

T−air,ALO

σ2

T−air,ALOT

as the amplification of the variance σ2

T−air,ALOT

through interactions of the climate system with the deep soil temperature.

Koster et al. (2000) verified that the linear framework assumption is reasonably

valid for the analysis of precipitation variance. A corresponding verification for air
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temperature variance is not possible here, since we lack a critical fourth simulation

– one in which climatologies of both SSTs and deep soil temperatures are specified

(Apart from the ensemble ALOT, we used pre-existing AGCM simulations for the

other two ensembles for our analysis. Computational time constraints did not per-

mit another AGCM simulation in which climatologies of both SSTs and TD were

prescribed). We proceed, then, on the unproven assumption of linearity, pointing

to its validity for precipitation and to the idea that temperature statistics are more

likely to be well-behaved than precipitation statistics.

Thus, with this caveat, Figure 6 shows maps of all four terms for the boreal

summer months and thus provides a full characterization of oceanic, atmospheric,

and land contributions to near-surface air temperature variance. The upper left plot

shows σ2

T−air,ALOT
. Even in the absence of deep soil temperature interaction, the air

temperature variance is much larger in midlatitudes than in the tropics. The very

high values in the midwestern United States are associated with strong precipitation

and evaporation variances there, and the occasional high value in polar latitudes may

be related to interannual variations in late-season snow cover.

The upper right and lower left panels of Figure 6 show XO and 1 − XO, the

relative contributions of ocean variability and chaotic atmospheric dynamics to the

air temperature variance. The oceanic contribution dominates only in the tropics. It

is lower (of order 10-30%) in the subtropics and is close to zero throughout much of

midlatitudes. Clearly, in this model, chaotic atmospheric dynamics has the largest

impact on the interannual variability of near-surface air temperature over most of

the globe. Perfect predictions of SSTs would not provide much skill in predicting

midlatitude air temperature over continents.



15

The lower right panel of Figure 6 shows the amplification factor,
σ2

T−air,ALO

σ2

T−air,ALOT

. The

interaction of the deep soil temperature with the climate system increases the air

temperature variance significantly in most areas, with increases of 50% or more in

the Sahara and in parts of western North America, southeastern South America,

central Asia, and northern Australia. Increases are small or non-existent, however,

throughout most of the tropics and in many high latitude areas.

Figure 7 shows the four corresponding plots for boreal winter. Variances pro-

duced in the absence of deep soil temperature interaction (upper left panel) appear to

have increased almost everywhere in the northern hemisphere. Many of the higher

values at higher latitudes presumably result from interannual variations in snow

cover. The relative contributions of ocean variability and chaotic atmospheric dy-

namics to the air temperature variance look similar to the values for boreal summer,

though with a southward shift in the ocean’s dominance in the tropics, and with

a general reversal of the southwest-northeast ocean contribution pattern in North

America.

The amplification of the air temperature variance due to deep soil temperature

interactions (lower right panel) is particularly different during boreal winter. Deep

soil temperature interaction increases σ2

T−air
by more than 50% in most midlatitude

regions and by more than 200% in parts of northern Asia. Significant amplification

is even seen in the tropics.

4.2 Connection to the Hydrological Cycle

Figure 8a shows the change in the variance of evaporation obtained when the deep

soil temperatures are prescribed to climatological values. The change is strong and
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positive over the midwestern United States, in stark contrast to the corresponding

and opposite change in the variance of surface temperature. The change in the

variance of precipitation is also large and positive over the midwestern United States

(Figure 8b), in direct response to the change in evaporation variance. Apparently,

the removal of interaction between the deep soil temperature and the rest of the

climate system, while decreasing the variance of surface air temperature (Figure 8c),

has increased the hydrological variance. The explanation for this behavior may lie

in the negative feedback associated with the evaporative cooling of the land surface.

In ALO, when a precipitation event causes a positive soil moisture anomaly, the

evaporation following the event is anomalously large; this tends to cool the surface,

and the evaporation anomaly, while still positive, is reduced. In ALOT, on the

other hand, when the evaporation anomaly cools the surface, the prescribed deep

soil temperature – effectively an infinite source of energy – helps to restore the

surface temperature to its earlier, warmer state. The negative feedback is reduced,

and the evaporation anomaly can remain large. This has the effect of increasing the

average size of the anomaly and its associated variance.

The increase of evaporation variability in Figure 8a is in some ways akin to a

well known problem with climate simulations that use prescribed SSTs (e.g., Bar-

sugli and Battisti, 1998). In a coupled atmosphere-ocean model (and, for that

matter, in nature), a sudden change in atmospheric temperature over the ocean

initially leads to an increased vertical temperature gradient and thus to increased

fluxes, but the gradient – and the fluxes – are reduced again as the ocean surface

temperature adjusts to the overlying air temperature. In essence, the ability of the

atmospheric and ocean surface temperatures in a coupled system to move in tandem
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(to a degree) keeps the variability of the surface fluxes in check. With prescribed

SSTs, however, one end of the temperature gradient is anchored, and as a result, any

variability of atmospheric temperature leads to an overestimation of the variance of

heat transport from the ocean surface. This limitation of non-coupled systems pro-

vides a potentially broader explanation for the increased variability in evaporation

seen for the ALOT ensemble in Figure 8: an artificially lowered variance of surface

temperature (due to the fixing of TD) in the presence of atmospheric variability can

similarly lead to an overestimated variance of vertical atmospheric gradients and

thus of the surface heat fluxes.

The effect of prescribed deep soil temperatures on the variance of evaporation

has major implications for the interpretation of certain AGCM results. While most

AGCMs use a zero heat flux boundary condition in the deep soil and thereby al-

low deep soil temperature to vary prognostically, interacting with the rest of the

climate system, a handful of AGCM and mesoscale modeling systems do rely on

prescribed climatological deep soil temperatures [Environmental Modeling Center,

(2003), Dudhia et al, (2005), and a handful AGCMs among the AMIP models in

Phillips, (1994)]. The prescription does prevent climate drift in the system and

is therefore advantageous, for example, for use in weather forecast systems. Fig-

ure 8, however, illustrates a distinct disadvantage of the approach. Depending on

the depth of prescribed deep soil temperatures, a modeling system may overestimate

the degree of land-atmosphere feedback in the system. Evaporation, and thus pre-

cipitation, may respond too strongly to variations in soil moisture. Land-atmosphere

interaction studies performed with such models thus have a distinct limitation.
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5 Summary and Discussion

This paper provides an analysis of the impacts of deep soil temperature variance on

near-surface air temperature variability in an AGCM. Through the joint analysis

of three AGCM experiments, we show in Figures 6 and 7 how interactive deep soil

temperatures amplify the air temperature variance induced originally from SST vari-

ations and chaotic atmospheric dynamics. Interactive deep soil temperatures have

their largest impact outside of the tropics, and their impact is significantly larger in

boreal winter than in boreal summer. (The analysis also shows that the influence of

SSTs on near-surface air temperature variance is essentially limited to the tropics.)

These results, along with those in Figures 4 and 5 showing the contribution of deep

soil temperatures to near-surface air temperature memory, suggest that the realis-

tic initialization of deep soil temperature in a forecast model may have a positive

impact on the forecast model’s skill.

The impact of deep soil temperature variability on the hydrological cycle (in

particular, on boreal summer precipitation and evaporation) was also examined.

In contrast to its impact on air temperature variance, the removal of deep soil

temperature variability increased the variability of evaporation and, as a result,

precipitation (Figure 8). This is explained by negative feedbacks in the free running

model (ALO). Positive soil moisture anomalies increase evaporation, but evaporative

cooling at the surface acts as a negative feedback that reduces this increase. In

ALOT, however, the prescription of deep soil temperature reduces the effectiveness

of this negative feedback. These results suggest that any AGCM that prescribes

a climatology of deep soil temperature may have a reduced usefulness for land-

atmosphere interaction studies.
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To highlight the impacts of deep soil temperature variability on climate, pre-

scribing the seasonal cycle of this temperature was a natural strategy. A related

question, one with potentially profound implications for the modeling of the land

surface in prediction systems, has to do with the choice of the heat capacities used

for subsurface temperature states. A study of Figure 8a might suggest the hypoth-

esis that an increase in a model’s subsurface heat capacity could give it greater

“inertia”, causing the model to reduce the negative feedback associated with evapo-

rative cooling – in effect, giving the model an enhanced evaporation variability and

thus an enhanced hydrological coupling with the atmosphere. The enhanced inertia

might also affect the air temperature variability, as suggested in Figures 4 through

7 – not to the extremes indicated in the figures, but in those directions. The connec-

tion between the treatment of subsurface heat content and the rest of the climate

system is complex and is the subject of ongoing research using more sophisticated

thermodynamic models.
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Figure List

Figure 1: (a) Seasonal cycles of surface temperature (TC – dotted line) and deep

soil temperature (TD – dark line) for the grid cell at 120W, 38N from ensemble ALO

for a representative year.(b)Climatological seasonal cycles of surface temperature

(TC – dotted line) and deep soil temperature (TD – dark line) for the grid cell at

120W, 38N from ensemble ALO over 20–years.

Figure 2: (top left) Annual mean clear–sky skin temperature calculated from the

ISCCP (1986-1995) data, (top right) Annual mean Tair from CAMS data, (bottom

left) Annual mean surface temperature from the ensemble ALO, and (bottom right)

Annual mean Tair from the ensemble ALO. For the CAMS plot, whited–out areas

indicate a lack of data. Units are [K].

Figure 3: Standard deviations of monthly: (top left) skin temperature calcu-

lated for the ISCCP (1986-1995) data, (top right) Tair from CAMS data, (bottom

left) surface temperature from the ensemble ALO, and (bottom right) Tair from the

ensemble ALO. For the CAMS plot, whited–out areas indicate a lack of data. Units

are [K]

Figure 4: One-month-lagged autocorrelation of Tair (ρ) for boreal summer

(JJA): (top left) from CAMS, (top right) from the ensemble ALO, (bottom left)

from the ensemble ALOT. (bottom right) Differences ALO – ALOT. For the CAMS

plot, whited–out areas indicate a lack of data.

Figure 5: Same as Figure 4, but for the winter (DJF).

Figure 6: Breakdown of the contributions of oceanic, atmospheric, and deep

soil temperature variance to Tair variance, assuming a linear framework for the

boreal summer (JJA). Top left: Tair variance from ALOT [K2]. Top right: The
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fraction of the Tair variance induced by variable SSTs [XO from Eq. 3]. Bottom

left: The fraction of the Tair variance induced by chaotic atmospheric dynamics (1–

XO). Bottom right: Amplification of variance due to deep soil temperature variance

(
σ2

ALO

σ2

ALOT

for Tair).

Figure 7: Same as Figure 6, but for the winter months (DJF).

Figure 8: ALO and ALOT Comparison (ALOT – ALO) : (a) Difference in

variance (σ2) of evaporation for boreal summer (JJA) [mm2d−1], (b) same but for

precipitation [mm2d−1], and (c) same but for surface temperature [K2].
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Table 1: Summary of experiments performed.
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(a) Seasonal Cycles of TC and TD for a representative year
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(b) Mean seasonal cycles of TC and TD over 20 years
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Figure 1: (a) Seasonal cycles of surface temperature (TC – dotted line) and deep soil

temperature (TD – dark line) for the grid cell at 120W, 38N from ensemble ALO for

a representative year.(b)Climatological seasonal cycles of surface temperature (TC

– dotted line) and deep soil temperature (TD – dark line) for the grid cell at 120W,

38N from ensemble ALO over 20–years.



27

180 120W 60W 0 60E 120E 180
 

60S

30S

EQ

30N

60N

90N

 

 (a)  Annual mean TS (ISCCP Data : 1986-1995)
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 (b) Annual mean TAIR (CAMS Data)
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 (c) Annual mean TS from ALO (1930-1989)
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 (a) σ of monthly TS (ISCCP Data : 1986-1995)
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 (b) σ of monthly TAIR (CAMS Data)
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 (c) σ of monthly TS (AGCM : 1930-1989)
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 (d) σ of monthly TAIR (AGCM : 1930-1989)
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 Fraction of TAIR variance induced by SSTs (XO)
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 Fraction of TAIR variance induced by chaotic atmospheric dynamics (1 - XO)
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 Amplification of TAIR variance due to deep soil temperature
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(a) DIFFERENCE IN σ2 of EVAPORATION (JJA)
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(b) DIFFERENCE IN σ2 of PRECIPITATION (JJA)
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(c) DIFFERENCE IN σ2 of SURFACE TEMPERATURE (JJA)
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Figure 8: ALO and ALOT Comparison (ALOT – ALO) : (a) Difference in variance

(σ2) of evaporation for boreal summer (JJA) [mm2d−1], (b) same but for precipita-

tion [mm2d−1], and (c) same but for surface temperature [K2].
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Experiment No. of Simulations Length of each Total years Experiment description

identifier in ensemble simulation

ALO 10 70 700 Interactive land,

Interannually varying ocean

ALOT 1 60 60 Interactive land,

Interannually varying ocean,

prescribed daily deep soil

temperature climatology

AL 1 200 200 Interactive land,

climatological ocean

Table 1: Summary of experiments performed.


